Sedangkanmagnet membutuhkan kedua kutub untuk menghasilkan medan magnet, karena akan terus menjalar dari kutub utara ke kutub selatan. Garis-garis medan magnet yang akan terus merambat ke tiap kutubnya. Magnet punya keunikan tersendiri. Magnet yang memiliki kutub utara dan kutub selatan tidak akan kehilangan medannya apabila dipotong.
MedanMagnet Sumber : (Giancoli, 2001) Gambar 2.1 Penggambaran Garis Medan Magnet Sebuah Magnet Batang Arah medan magnet pada suatu titik bisa didefinisikan sebagai arah yang ditunjuk kutub utara sebuah jarum kompas ketika diletakkan di titik tersebut. Gambar 2.1 menunjukan bagaimana suatu garis medan magnet ditemukan sekitar
Diwilayah tersebut banyak kandungan magnet yang ditemukan sejak zaman prasejarah. Magnet terbuat dari logam seperti besi dan baja. Magnet memiliki berbagai bentuk dan dinamakan sesuai bentuknya, seperti manget U dan magnet batang. Penentuan kutub magnet batang dapat dilakukan dengan percobaan sederhana.
14 FISIKA DASAR 2 Gaya Magnetik pada Pengantar Berarus dalam Medan Magnetik Secara matematik besar gaya Lorentz dapat dituliskan sebagai berikut: Dengan F = gaya Lorentz (N), B = induksi magnetik (T), I = kuat arus listrik (A), = sudut yang dibentuk oleh I dan B. Dalam bentuk vektor, persamaan diatas dapat dinyatakan dengan perkalian silang
Persamaanfluksi magnet adalah: Dimana; B = Kerapatan medan magnet. Φ = Fluksi magnet. A = Penampang inti. Contoh : Belitan kawat bentuk inti persegi 50mm x 30 mm, menghasilkan kerapatan fluksi magnet sebesar 0,8 Tesla. Hitung besar fluksi magnetnya. Jawaban: B = Φ/ A, maka Φ = B.A = 0,08T x (0,05 m x 0,03 m) = 1,2 mWb.
A Kutub Magnet. Suatu magnet memperlihatkan ciri-ciri tertentu. Setiap magnet dua tempat yang gaya magnetnya paling kuat. Daerah itu disebut kutub magnet. Ada 2 kutub magnet, yaitu kutub utara (U) dan kutub selatan (S). Seringkali kamu menjumpai magnet yang bertuliskan N dan S. N merupakan kutub utara magnet itu (singkatan dari North yang
. ILCBO]OE XZOI]BI\F ?Xlrdnjooe Jletui Flmoe Focelt ?. ]u`uoe Fleue`uioe jletui flmoe focelt sljuok focelt jotoec mlecoe slrjui-slrjui jlsb. . Oaot moe Jokoe ? Iortne putbk ? alfjor / ilrtos putbk. Focelt jotoec ? juok. 4 Tlrjui-slrjui jlsb slduiupeyo. 4. ]lnrb Mosor 0 Focelt otou focebt omoaok suotu njyli yoec flfpueyob suotu flmoe focelt focebt jlrosoa morb jokoso Rueoeb foceætbs aætkns yoec jlrortb jotuFocelsboe. Focelsbo omoaok eofo sljuok wbaoyok mb Rueoeb pomo foso aoau yoec ibeb jlreofo Foebso slioroec jlromo mb wbaoyok ]urib mb foeo tlrioemuec jotu foceltyoec mbtlfuioe sl`oi zofoe muau mb wbaoyok soot beb, suotu focelt omoaok suotu fotlrb yoec flfpueyob suotu flmoefocelt. Fotlrb tlrsljut jbso moaof jlrwu`um focelt tltop otou focelt tbmoi yoec slioroec beb omo kofpbr slfuoeyo omoaok focelt slaoau flfbabib muo iutuj yobtu0 iutuj utoro enrtk/ E moe iutuj slaotoesnutk/ T. Soaoupue focelt btu mbpntnec-pntnec, pntnecoe focelt ildba tlrsljut oioetltop flfbabib muo mopot fleorbi jlemo aobe. Jljlropo jlemo jokioe tlrtorbi aljbk iuot morbyoec aobe, yobtu jokoe ancof. Eofue tbmoi slfuo ancof flfpueyob moyo torbi yoecsofo tlrkomop focelt. Jlsb moe jo`o omoaok muo dnetnk fotlrb yoec flfpueyob moyotorbi yoec tbeccb nalk focelt. Tlmoecioe nisbcle dobr omoaok dnetnk fotlrb yoecflfpueyob moyo torbi yoec rlemok nalk focelt. =. Doro Ilr`o 0 ? Altoioe sljuok focelt jotoec mb otos fl`o Xlcoecaok slalfjor ilrtos iortne putbk mb otos fl`o tlrsljut. 4 ]ojurioe slrjui jlsb sldoro flroto mb otos iortne, ilfumboe iltuiaok iortne btu sldoro plraokoe jljlropo ioab. = Ofotbaok moe cofjorioe pnao yoec mbjletui slrjui-slrjui jlsb btu. owoj0 o. Focelt otou focebt omoaok suotu njyli yoec flfpueyob suotu flmoe focelt. Ioto focelt focebt jlrosoa morb jokoso Rueoeb foceætbs aætkns yoec jlrortb jotu Focelsboe. j. Focelt boaok sl`lebs ancof yoec `uco mbileoab mlecoe eofo jlsb jlroeb . Focelt flfpueyob flmoe focelt moe mopot fleorbi jutbr-jutbr jlsb aobe il orokeyo. Opoiok sljuok focelt slaoau flfbabib iutuj utoro moe iutuj slaotoe> laosioe! owoj0 Ro, Tltbop focelt flfpueyob sotu 'iutuj slaotoe' moe sotu 'iutuj utoro'. Opojbao sotu ku`uec focelt mbmliotb suotu ku`uec focelt yoec aobe, ilmuo-muo ku`uec oioe fleorbi mb oetoro sotu mlecoe yoec aobe slibroeyo ku`uec-ku`uec focelt btu flfpueyob iutuj yoec jlraobeoe. Tljoabieyo oioe jlraoiu slibroeyo ilmuo-muo ku`uec flfpueyob iutuj yoec sofo. 4 laosioe 4 fodof oturoe uetui flauibs corbs-corbs flmoe foceltbd! owoj 0 ?. Corbs corbs coyo foceltbi tbmoi plreok jlrpntnecoe.. corbs corbs coyo foceltbi slaoau ilauor morb iutuj \toro moe fosui il iutuj slaotoe4. tlfpot mlecoe corbs corbs coyo ropot fleyotoioe Flmoe foceltbi iuot, sljoabieyo mlecoe corbs corbs coyo tletoec fleyotoioe Flmoe foceltbi alfok 7. Ilsbfpuaoe Tltlaok flaoiuioe plrdnjooe, mopot mbsbfpuaioe jokwo iutuj focelt yoec sofo opojbao mbmliotioe oioe soabec tnaoi- flenaoi, opojbao iutup yoec jlrjlmo mb mliotioe oioe torbi fleorbi. Focelt iutuj utoro oioe slaoau tlrtorbi il focelt iutuj slaotoe. 3. Ilsuabtoe yoec mboaofb Iofb suabt flelfuioe jokoe slplrtb slrjui-slrjui jlsb MOG]OZ X\T]OIO
- Keberadaan magnet mampu menarik semua benda-benda yang ada di sekitarnya, termasuk makhluk bumi. Jika hewan mampu mendeteksi medan magnet bumi, manusia membutuhkan bantuan alat, seperti digunakan manusia untuk mengetahui arah utara selatan atau keberadaan kutub utara dan kutub selatan magnet bumi. Dilansir dari situs Kementerian Pendidikan dan Kebudayaan Republik Indonesia, manusia sering menggunakan magnet dalam kegidupan sehari-hari. Misalnya seperti speaker, telepon, televisi, bel rumah, dan sebagainya. Di mana alat-alat tersebut memanfaatkan magnet sebagai komponen juga Hukum Pascal dan Aplikasinya Konsep gaya magnet Kata magnet berasal dari bahasa Yunani magnitis lithos yang berarti batu Magnesian. Magnesian adalah nama sebuah wilayah di Yunani pada masa lalu yang kini bernama Manisa sekarang berada di wilayah Turki. Di wilayah tersebut banyak kandungan magnet yang ditemukan sejak zaman prasejarah. Magnet terbuat dari logam seperti besi dan baja. Magnet memiliki berbagai bentuk dan dinamakan sesuai bentuknya, seperti manget U dan magnet batang. Penentuan kutub magnet batang dapat dilakukan dengan percobaan sederhana.
Magnet merupakan benda yang dapat menarik benda disekitarnya karena memiliki sifat kemagnetan atau magnetis. Kemagnetan atau magnetis adalah kemampuan benda untuk menarik benda-benda lain yang ada di sekitarnya. Gaya magnet dapat menyebabkan tertariknya benda-benda di sekitarnya. Kekuatan magnet menarik benda-benda tertentu disebut gaya magnet. Medan magnet adalah daerah atau wilayah yang dipengaruhi oleh gaya magnet. Medan magnet tidak dapat kita lihat, tetapi dapat digambarkan. Besar medan magnet tergantung pada kekuatan magnet. Medan magnet dapat ditunjukan dengan menggunakan serbuk besi yang ditaburkan di atas kertas dan dapat pula menggunakan kompas. Arah medan magnet yang berupa garis-garis yang menghubungkan kutub-kutub magnet disebut dengan garis gaya magnet. Garis gaya magnet memiliki ciri antara lain sebagai berikut Garis gaya magnet memiliki arah meninggalkan kutub utara dan menuju kutub selatan. Garis gaya magnet selalu tidak berpotongan. Daerah yang garis-garis gaya magnetiknya rapat menunjukkan medan magnetik yang kuat, sedangkan daerah yang garis-garis gaya magnetiknya kurang rapat menunjukkan medan magnetik yang lemah Laporan Percobaan Medan Magnet Tujuan Percobaan Mengidentifikasi medan magnet Alat dan bahan 1..Magnet 2. Serbuk besi yang diperoleh dari gundukan pasir 3. Kertas karton berukuran A4 Langkah-langkah Langkah-langkah Percobaan Taruhlah magnet di bawah kertas karton berukuran A4. Taburkan serbuk besi secukupnya di atas kertas karton tersebut. Ketuklah kertas karton secara perlahan. Gerakkan magnet di seputar kertas. Jauhkan magnet dari kertas. Hasil Percobaan Di daerah sekitar kutub magnet garis-garis yang dibentuk oleh pasir besia sangat rapat. Di bagian tengah magnet garis-garis yang terbentuk oleh pasir besi lebih renggang jika dibandingkan dengan daerah di sekitar kutub magnet.. Kesimpulan Dari pengamatan yang telah dilakukuan dapat disimpulkan bahwa medan magnet paling kuat adalah di sekitar kutub magnet yang ditunjukan oleh rapatnya garis-garis yang dibentuk oleh pasir besi. Sedangkan pada bagian tengah magnet memiliki medan magnet yang kurang kuat yang ditunjukan dengan renggangnya garis-garis yang dibentuk oleh pasir besi. Walaupun gaya-gaya magnet yang terkuat terletak pada kutub-kutub magnet, gaya-gaya magnet tidak hanya berada pada kutub-kutubnya.. Gaya-gaya magnet juga timbul di sekitar magnet. daerah di sekitar magnet yang terdapat gaya-gaya magnet disebut medan magnet.
Laporan Praktikum Fisika II Modul IV – Percobaan Medan Magnet dalam Solenoida Eka Putra Prasetya/18524057 Asisten Vera Giyaning Tiyas Tanggal praktikum 18 Juni 2019 18524057 Teknik Elektro – Fakultas Teknologi Industri Universitas Islam Indonesia Abstrak— Kata “Magnet” sudah kita dengar pada kehidupan sehari – hari. Kita sering berfikir jika kita mendengar kata magnet selalu berhubungan dengan hal – hal menarik benda. Magnet sangat berguna untuk kehidupan sehari – hari seperti menarik benda – benda yang jatuh di tempat yang tidak bisa kita jangkau. Selain itu, alat – alat disekitar kita juga banyak yang memanfaatkan magnet ini seperti, kompas, telepon, pembangkit listrik, dan masih banyak lainnya. Karena banyaknya kegunaan magnet, Praktikum ini sangat berguna untuk memahami lebih jauh tentang magnet khususnya untuk untuk memahami pengaruh arus listrik dan jumlah lilitan per satuan panjang terhadap medan magnet solenoid. Praktikum kali ini mengalami kendala yaitu Rheostat tidak bisa digunakan. Kendala ini menyebabkan data percobaan tidak didapatkan secara utuh. Data referensi yang sudah ada digunakan untuk menganalisa komponen – komponen pada praktikum ini. Semakin besar arus listrik dan jumlah lilitan per satuan panjang maka medan listrik yang dihasilkan semakin besar. Kata kumci—Medan Magnet I. PENDAHULUAN Kata “Magnet” sudah kita dengar pada kehidupan sehari – hari. Kita sering berfikir jika kita mendengar kata magnet selalu berhubungan dengan hal – hal menarik benda. Magnet sangat berguna untuk kehidupan sehari – hari seperti menarik benda – benda yang jatuh di tempat yang tidak bisa kita jangkau. Selain itu, alat – alat disekitar kita juga banyak yang memanfaatkan magnet ini seperti, kompas, telepon, pembangkit listrik, dan masih banyak lainnya. Karena banyaknya kegunaan magnet, Praktikum ini sangat berguna untuk memahami lebih jauh tentang magnet khususnya untuk untuk memahami pengaruh arus listrik dan jumlah lilitan per satuan panjang terhadap medan magnet solenoid. II. TINJAUAN PUSTAKA A. Medan Magnet Medan magnet adalah medan yang terbentuk oleh gaya – gaya yang berada di sekitar magnet. Medan ini tidak bisa dilihat namun dapat dirasakan dengan cara mengamati pengaruh magnet terhadap benda lain, misalnya seperti magnet yang menarik pasir – pasir besi. B. Kuat Arus Kuat arus listrik didefinisikan sebagai besar muatan listrik yang melalui sebuah media konduktor dalam satu waktu. Proton dan elektron di dalam atom pada dasarnya adalah pembawa muatan listrik ini yang mana proton memiliki muatan positif dan elektron memiliki muatan negatif. Proton hanya dapat bergerak di dalam inti atom. Arus listrik ini ditimbulkan oleh gerakan elektron valensi yang bergerak dari atom yang satu ke atom yang lainnya. C. Solenoida Solenoida adalah alat yang dapat mengonversi energi listrik menjadi energi gerak. Dorongan dan tarikan merupakan gerakan yang biasanya dihasilkan dari Solenoid. Solenoid ini tersusun atas sebuah lilitan kumparan listrik electrical coil yang dililitkan pada tabung silinder dengan aktuator ferro-magnetic yang dapat “Masuk” dan “Keluar” bodi kumparan. Aktuator yang dimaksud disini adalah alat yang dapat bergerak. Besarnya medan magnet dalam solenoid dinyatakan pada persamaan dibawah ini B = Kuat medan magnet = Tetapan permeabilitas pada ruang hampa Tesla-meter/Ampere. Nilainya 4π.m/A N = Jumlah lilitan kawat per satuan panjang solenoida lilitan/m I = Arus listrik Ampere Rumus jumlah lilitan kawat per satuan panjang N = Jumlah lilitan lilitan I = Panjang solenoid Rumus jika percobaan tidak dilakukan dalam ruang hampa Dengan adalah tetapan permeabilitas. Jika medium tempat diukurnya medan magnet di tengah solenoid adlaah udara, k ditentukan sebagai persamaan berikut III. METODE PRAKTIKUM Pada praktikum kali ini alat dan bahan yang digunakan adalah 1 buah catu daya KAL 61 3A 12V regulasi, 1 buah solenoid 50 cm, 1 buah rheostat 2-10 4A, 2 buah kabel penghubung 50 cm merah, 1 buah sensor medan magnet BT-plug, 1 buah eurolab interface, 1 buah multimeter digital, 2 buah kabel penghubung 50 cm hitam. Hal pertama yang harus dilakukan adalah mempersiapkan percobaan. Pertama, sensor medan magnet dihubungkan ke piranti antarmuka Eurolab, kemudian Eurolab disambungkan ke computer. Setelah itu, terdapat satu garis skala pada tabung solenoid bernilai cm diperhatikan sehingga jarak antar garis makro = 1 cm. Skala total = 54 cm. Kemudian, rangkaian alat catu daya, multimeter mode amperemeter, hambatan geser rheostat, dan solenoid disusun secara seri. Setelah itu, catu daya pada tegangan 6 V dinyalakan dan multimeter dinyalakan untuk pengukuran arus DC. Kemudian, aktivitas “Medan Magnet dalam dibuka pada program Coach. Setelah itu, nilai medan magnet yang terdeteksi oleh sensor diperhatikan dan memastikan sensor mendeteksi medan magnet dengan baik jika nilai yang terukur fluktuatif di kondisi lingkungan dan konstan jika didekatkan ke magnet, maka sensor berfungsi dengan baik. Setelah persiapan alat telah selesai dipersiapkan, percobaan pertama yang dilakukan adalah pengaruh arus listrik terhadap kuat medan magnet solenoid. Pertama, sensor medan magnet dimasukkan ke dalam solenoid. Kemudian, kumparan direnggangkan menjadi 50 cm dan jarak antar lilitan diatur sama secara perlahan. Setelah itu, jumlah lilitan solenoid dihitung, dan dicatat sebagai nilai N. Kemudian, catu daya dan multimeter dinyalakan. Setelah itu, besar arus diatur dengan menggeser hambatan geser hingga mencapai nilai A. Kemudian, tombol Start diklik. Nilai yang terukur oleh sensor dan ditampilkan pada program Coach akan berubah – ubah dalam rentang waktu tertentu. Nilai medan magnet maksimum dipilih dari pengukuran tersebut dan nilainya dicatat pada tabel Terakhir, langkah 2-6 diulangi untuk kenaikan arus sebesar A hingga mencapai arus A atau semaksimal mungkin mendekati 3 A. Percobaan terakhir yang dilakukan adalah pengaruh jumlah lilitan kawat per satuan panjang terhadap kuat medan magnet solenoida. Peratama, sensor medan magnet dimasukkan ke dalam selonoida. Kemudian, jumlah lilitan kawat selonoida dihitung dan diatur panjang solenoid menjadi 20 cm. Setelah itu, catu daya dan multimeter dinyalakan dan diatur besar arus pada A dengan menggeser hambatan geser. Kemudian, tombol start pada program Coach diklik. Selama pengukuran berlangsung, nilai yang terukur dan ditampilkan oleh program Coach akan berubah – ubah dalam rentang waktu tertentu. Lalu, nilai medan magnet maksimum dari pengukuran tersebut dipilih dan hasilnya dicatat pada tabel Setelah itu, jendela yang muncul diperhatikan. Lalu, nilai average yang merupakan nilai medan magnet rata – rata yang dihasilkan saat panjang solenoid 20 cm dicatat pada tabel pengolahan data. Terakhir, langkah 2-7 untuk setiap pertambahan panjang solenoid sebesar 5 cm hingga 50 cm diulangi. IV. HASIL DAN ANALISIS A. Pengaruh arus listrik terhadap Kuat Medan Magnet Solenoida N = 104 Lilitan l = M n = 208 /m Tabel 1 Hasil Pengamatan Pengaruh Arus Listrik terhadap Kuat Medan Magnet Gambar 1 Grafik pengaruh arus listrik terhadap kuat medan magnet Gambar 2 Pengaruh arus listrik terhadap kuat medan magnet berdasarkan referensi 4 B. Pengaruh Jumlah Lilitan Kawat per Satuan Panjang terhadap Kuat Medan Magnet Solenoida N = 104 Lilitan l = m Tabel 2 Hasil Pengamatan Pengaruh Jumlah Lilitan Kawat per Satuan Panjang terhadap Kuat Medan Magnet Gambar 3 Grafik pengaruh jumlah lilitan kawat per satuan panjang terhadap kuat medan magnet Gambar 4 Pengaruh jumlah lilitan terhadap kuat medan magnet berdasarkan referensi 4 Gambar 5 Rheostat sebelum digeser Gambar 6 Rheostat setelah digeser C. Analisa Praktikum pada kali ini tidak berjalan sempurna. Ketidak sempuranaan itu terjadi karena terdapat sedikit kendala pada Rheostat. Alat sudah dirangkai sesuai dengan langkah kerja karena arus pada saat itu sudah bisa keluar dengan arah yang benar sehingga menurut penulis rangkaian sudah tepat. Namun ketika ingin memperkecil atau memperbesar arus dengan cara menggeser Rheostat, Arus tetap sama tidak ada perubahan. Padahal Reostat sudah digeser beberapa bagian namun arus yang dihasilkan tetap sama. Sepengetahuan penulis, Rheostat ketika digeser maka hambatannya akan berubah. Untuk itu, penulis melakukan pengetesan pada Rheostat dengan cara mengecek hambatannya dengan menggunakan multimeter. Hasil dari pengetesan tersebut dapat dilihat pada gambar 5 dan 6. Gambar tersebut membuktikan bahwa ada kesalahan pada Rheostat. Rheostat tidak memberikan hambatan yang berbeda ketika digeser. Arus yang tidak bisa diatur membuat penulis hanya bisa mendapatkan data medan magnet pada arus yang sudah tercantum dari awal. Reostat berperan penting untuk mengatur arus sesuai data di tabel. Dengan menggeser Reostat maka arus bisa ditentukan sesuai data pada tabel. Karena Reostat tidak memberikan hambatan yang berbeda, data yang didapatkan hanya berjumlah 1 untuk tiap bagian praktikum. Data tersebut tidak bisa untuk membuat grafik hubungannya. Agar bisa menganalisa tiap hubungannya, penulis mencantumkan grafik dari penelitian lain seperti tampak pada gambar 2 dan 4. Pada grafik pada gambar nomor 2 menunjukkan garis lurus gradien positif. Hal ini berarti hubungan antara medan magnet dengan arus listrik adalah berbanding lurus. Semakin besar arus yang masuk maka medan magnet yang dihasilkan akan semakin besar pula. Nilai k pada percobaan A tidak dapat ditemukan karena ketetapan permeabilitas tidak diketahui. Pada grafik pada gambar nomor 4 menunjukkan garis lurus gradient positif. Namun, gambar tersebut menunjukkan hubungan antara medan magnet dan jumlah lilitan. Untuk hubungan tersebut, hubungannya adalah berbanding lurus dimaan semakin banyak jumlah lilitan maka semakin besar medan magnet. Percobaan B tidak menampilkan gambar sehingga tidak bisa dianalisa hubungan antara jumlah lilitan per satuan panjang dengan medan magnet yang dihasilkan. Namun jika melihat pada rumus, hubungannya adalah jika jumlah lilitan ditambah dengan panjang yang tetap maka berbanding lurus. Namun, jika lilitan jumlahnya tetap dan panjangnya berubah ubah maka berbanding terbalik. K pada percobaan B tidak dapat ditemukan karena ketetapan permeabilitas tidak diketahui. Karena grafik tidak diketahui maka tetapan permeabilitas tidak dapat diketahui. Hal ini berakibat pada tidak bisa membandingkan apakah tetapan permeabilitas yang diperoleh dari percobaan dengan permeabilitas ruang hampa. Namun jika dilihat pada teori yang ada maka terdapat perbedaannya. Ruang hampa adalah ruang dimana tidak ada partikel – partikel termasuk udara. Percobaan tersebut dilakukan pada ruangan yang terdapat udara – udara disekitarnya seperti oksigen, nitrogen dan lain – lain. Berdasarkan definisi tersebut maka dapat disimpulkan bahwa tetapan permeabilitas dan permeabilitas ruang hampa berbeda. Dilihat dari rumus, fakor – faktor yang mempengaruhi nilai ketetapan permeabilitas adalah medan magnet, jumlah lilitan per satuan panjang, dan arus. Semakin besar medan magnet maka tetapan permeabilitas akan semakin besar. Namun semakin besar arus dan jumlah lilitan per satuan panjang maka tetapan permeabilitas akan semakin kecil. V. KESIMPULAN Praktikum kali ini mengalami kendala yaitu Rheostat tidak bisa digunakan. Kendala ini menyebabkan data percobaan tidak didapatkan secara utuh. Data referensi yang sudah ada digunakan untuk menganalisa komponen – komponen pada praktikum ini. Semakin besar arus listrik dan jumlah lilitan per satuan panjang maka medan listrik yang dihasilkan semakin besar. DAFTAR PUSTAKA [1] Modul Praktikum Fisika II. Jurusan Teknik Elektro Universitas Islam Indonesia, 2019. [2] J. Wahyudi and G. Pauzi, "Desain dan Karakteristik Penggunaan Sensor Efek Hall UGN3503 untuk Mengukur Arus Listrik pada Kumparan Leybold P6271 Secara Non Destruktif", Teori dan Aplikasi Fisika, vol. 1, no. 2, 2013. [Accessed 24 June 2019]. [3] H. Budiatma, "Pengertian Permeabilitas magnetik Usaha321", Usaha321, 2018. [Online]. Available [Accessed 24- Jun- 2019]. [4] I. Pebrika, "Analisa Distribusi Medan Magnet pada Sensor Dasar Magnetic Inductance Tomography MIT Menggunakan Simulasi Finite Element Method FEM", 2014. [Accessed 24 June 2019].
Praktikum IPA di SD PERCOBAAN BENTUK MEDAN MAGNET termasuk dalam modul 8, yaitu dalam kegiatan praktikum 2 kemagnetan. Berikut praktikumnya A. TUJUAN Menunjukan bentuk medan magnet sebuah magnet batang dengan serbuk-serbuk besi. B. ALAT DAN BAHAN 1. Karton putih 1 lembar / kertas putih. 2. Magnet batang 1 buah. 3. Serbuk-serbuk besi secukupnya. C. CARA KERJA 1. Letakan sebuah magnet batang di atas meja 2. Peganglah selembar kertas karton putih di atas meja tersebut. 3. Taburkan serbuk besi secara merata di atas karton, kemudian ketuklah karton itu secara perlahan beberapa kali. 4. Amatilah dan gambarkan pola-pola yang dibentuk serbuk-serbuk besi itu. 5. Dari hasil pengamatan anda buatlah kesimpulan tentang medan magnet. Praktikum IPA di SD PERCOBAAN BENTUK MEDAN MAGNET untuk lebih lengkapnya dapat anda download melalui salah satu link dibawah ini Download 1 Download 2
gambar percobaan bentuk medan magnet